5 种使用 python 代码轻松实现数据可视化的方法 -买球官网平台

1顶
0踩

数据可视化是数据科学家工作中的重要组成部分。在项目的早期阶段,你通常会进行探索性数据分析(exploratory data analysis,eda)以获取对数据的一些理解。创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型、高维数据集。在项目结束时,以清晰、简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解。

matplotlib 是一个流行的 python 库,可以用来很简单地创建数据可视化方案。但每次创建新项目时,设置数据、参数、图形和排版都会变得非常繁琐和麻烦。在这篇博文中,我们将着眼于 5 个数据可视化方法,并使用 python matplotlib 为他们编写一些快速简单的函数。与此同时,这里有一个很棒的图表,可用于在工作中选择正确的可视化方法!

散点图

散点图非常适合展示两个变量之间的关系,因为你可以直接看到数据的原始分布。 如下面第一张图所示的,你还可以通过对组进行简单地颜色编码来查看不同组数据的关系。想要可视化三个变量之间的关系? 没问题! 仅需使用另一个参数(如点大小)就可以对第三个变量进行编码,如下面的第二张图所示。


现在开始讨论代码。我们首先用别名 “plt” 导入 matplotlib 的 pyplot 。要创建一个新的点阵图,我们可调用 plt.subplots() 。我们将 x 轴和 y 轴数据传递给该函数,然后将这些数据传递给 ax.scatter() 以绘制散点图。我们还可以设置点的大小、点颜色和 alpha 透明度。你甚至可以设置 y 轴为对数刻度。标题和坐标轴上的标签可以专门为该图设置。这是一个易于使用的函数,可用于从头到尾创建散点图!
import matplotlib.pyplot as pltimport numpy as npdef scatterplot(x_data, y_data, x_label="", y_label="", title="", color = "r", yscale_log=false):
    # create the plot object
    _, ax = plt.subplots()    # plot the data, set the size (s), color and transparency (alpha)
    # of the points
    ax.scatter(x_data, y_data, s = 10, color = color, alpha = 0.75)    if yscale_log == true:
        ax.set_yscale('log')    # label the axes and provide a title
    ax.set_title(title)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)

折线图

当你可以看到一个变量随着另一个变量明显变化的时候,比如说它们有一个大的协方差,那最好使用折线图。让我们看一下下面这张图。我们可以清晰地看到对于所有的主线随着时间都有大量的变化。使用散点绘制这些将会极其混乱,难以真正明白和看到发生了什么。折线图对于这种情况则非常好,因为它们基本上提供给我们两个变量(百分比和时间)的协方差的快速总结。另外,我们也可以通过彩色编码进行分组。

这里是折线图的代码。它和上面的散点图很相似,只是在一些变量上有小的变化。
def lineplot(x_data, y_data, x_label="", y_label="", title=""):
    # create the plot object
    _, ax = plt.subplots()    # plot the best fit line, set the linewidth (lw), color and
    # transparency (alpha) of the line
    ax.plot(x_data, y_data, lw = 2, color = '#539caf', alpha = 1)    # label the axes and provide a title
    ax.set_title(title)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)

直方图

直方图对于查看(或真正地探索)数据点的分布是很有用的。查看下面我们以频率和 iq 做的直方图。我们可以清楚地看到朝中间聚集,并且能看到中位数是多少。我们也可以看到它呈正态分布。使用直方图真得能清晰地呈现出各个组的频率之间的相对差别。组的使用(离散化)真正地帮助我们看到了“更加宏观的图形”,然而当我们使用所有没有离散组的数据点时,将对可视化可能造成许多干扰,使得看清真正发生了什么变得困难。

下面是在 matplotlib 中的直方图代码。有两个参数需要注意一下:首先,参数 n_bins 控制我们想要在直方图中有多少个离散的组。更多的组将给我们提供更加完善的信息,但是也许也会引进干扰,使得我们远离全局;另一方面,较少的组给我们一种更多的是“鸟瞰图”和没有更多细节的全局图。其次,参数 cumulative 是一个布尔值,允许我们选择直方图是否为累加的,基本上就是选择是 pdf(probability density function,概率密度函数)还是 cdf(cumulative density function,累积密度函数)。
def histogram(data, n_bins, cumulative=false, x_label = "", y_label = "", title = ""):
    _, ax = plt.subplots()
    ax.hist(data, n_bins = n_bins, cumulative = cumulative, color = '#539caf')
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)

想象一下我们想要比较数据中两个变量的分布。有人可能会想你必须制作两张直方图,并且把它们并排放在一起进行比较。然而,实际上有一种更好的办法:我们可以使用不同的透明度对直方图进行叠加覆盖。看下图,均匀分布的透明度设置为 0.5 ,使得我们可以看到他背后的图形。这样我们就可以直接在同一张图表里看到两个分布。

对于重叠的直方图,需要设置一些东西。首先,我们设置可同时容纳不同分布的横轴范围。根据这个范围和期望的组数,我们可以真正地计算出每个组的宽度。最后,我们在同一张图上绘制两个直方图,其中有一个稍微更透明一些。
# overlay 2 histograms to compare themdef overlaid_histogram(data1, data2, n_bins = 0, data1_name="", data1_color="#539caf", data2_name="", data2_color="#7663b0", x_label="", y_label="", title=""):
    # set the bounds for the bins so that the two distributions are fairly compared
    max_nbins = 10
    data_range = [min(min(data1), min(data2)), max(max(data1), max(data2))]
    binwidth = (data_range[1] - data_range[0]) / max_nbins    if n_bins == 0
    	bins = np.arange(data_range[0], data_range[1]   binwidth, binwidth)    else: 
    	bins = n_bins    # create the plot
    _, ax = plt.subplots()
    ax.hist(data1, bins = bins, color = data1_color, alpha = 1, label = data1_name)
    ax.hist(data2, bins = bins, color = data2_color, alpha = 0.75, label = data2_name)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    ax.legend(loc = 'best')

柱状图

当你试图将类别很少(可能小于10)的分类数据可视化的时候,柱状图是最有效的。如果我们有太多的分类,那么这些柱状图就会非常杂乱,很难理解。柱状图对分类数据很好,因为你可以很容易地看到基于柱的类别之间的区别(比如大小);分类也很容易划分和用颜色进行编码。我们将会看到三种不同类型的柱状图:常规的,分组的,堆叠的。在我们进行的过程中,请查看图形下面的代码。

常规的柱状图如下面的图1。在 barplot() 函数中,xdata 表示 x 轴上的标记,ydata 表示 y 轴上的杆高度。误差条是一条以每条柱为中心的额外的线,可以画出标准偏差。

分组的柱状图让我们可以比较多个分类变量。看看下面的图2。我们比较的第一个变量是不同组的分数是如何变化的(组是g1,g2,……等等)。我们也在比较性别本身和颜色代码。看一下代码,y_data_list 变量实际上是一个 y 元素为列表的列表,其中每个子列表代表一个不同的组。然后我们对每个组进行循环,对于每一个组,我们在 x 轴上画出每一个标记;每个组都用彩色进行编码。

堆叠柱状图可以很好地观察不同变量的分类。在图3的堆叠柱状图中,我们比较了每天的服务器负载。通过颜色编码后的堆栈图,我们可以很容易地看到和理解哪些服务器每天工作最多,以及与其他服务器进行比较负载情况如何。此代码的代码与分组的条形图相同。我们循环遍历每一组,但这次我们把新柱放在旧柱上,而不是放在它们的旁边。



def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""):
    _, ax = plt.subplots()
    # draw bars, position them in the center of the tick mark on the x-axis
    ax.bar(x_data, y_data, color = '#539caf', align = 'center')
    # draw error bars to show standard deviation, set ls to 'none'
    # to remove line between points
    ax.errorbar(x_data, y_data, yerr = error_data, color = '#297083', ls = 'none', lw = 2, capthick = 2)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
def stackedbarplot(x_data, y_data_list, colors, y_data_names="", x_label="", y_label="", title=""):
    _, ax = plt.subplots()
    # draw bars, one category at a time
    for i in range(0, len(y_data_list)):
        if i == 0:
            ax.bar(x_data, y_data_list[i], color = colors[i], align = 'center', label = y_data_names[i])
        else:
            # for each category after the first, the bottom of the
            # bar will be the top of the last category
            ax.bar(x_data, y_data_list[i], color = colors[i], bottom = y_data_list[i - 1], align = 'center', label = y_data_names[i])
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    ax.legend(loc = 'upper right')
def groupedbarplot(x_data, y_data_list, colors, y_data_names="", x_label="", y_label="", title=""):
    _, ax = plt.subplots()
    # total width for all bars at one x location
    total_width = 0.8
    # width of each individual bar
    ind_width = total_width / len(y_data_list)
    # this centers each cluster of bars about the x tick mark
    alteration = np.arange(-(total_width/2), total_width/2, ind_width)
    # draw bars, one category at a time
    for i in range(0, len(y_data_list)):
        # move the bar to the right on the x-axis so it doesn't
        # overlap with previously drawn ones
        ax.bar(x_data   alteration[i], y_data_list[i], color = colors[i], label = y_data_names[i], width = ind_width)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    ax.legend(loc = 'upper right')

箱形图

我们之前看了直方图,它很好地可视化了变量的分布。但是如果我们需要更多的信息呢?也许我们想要更清晰的看到标准偏差?也许中值与均值有很大不同,我们有很多离群值?如果有这样的偏移和许多值都集中在一边呢?

这就是箱形图所适合干的事情了。箱形图给我们提供了上面所有的信息。实线框的底部和顶部总是第一个和第三个四分位(比如 25% 和 75% 的数据),箱体中的横线总是第二个四分位(中位数)。像胡须一样的线(虚线和结尾的条线)从这个箱体伸出,显示数据的范围。

由于每个组/变量的框图都是分别绘制的,所以很容易设置。xdata 是一个组/变量的列表。matplotlib 库的 boxplot() 函数为 ydata 中的每一列或每一个向量绘制一个箱体。因此,xdata 中的每个值对应于 ydata 中的一个列/向量。我们所要设置的就是箱体的美观。

def boxplot(x_data, y_data, base_color="#539caf", median_color="#297083", x_label="", y_label="", title=""):
    _, ax = plt.subplots()
    # draw boxplots, specifying desired style
    ax.boxplot(y_data
               # patch_artist must be true to control box fill
               , patch_artist = true
               # properties of median line
               , medianprops = {'color': median_color}
               # properties of box
               , boxprops = {'color': base_color, 'facecolor': base_color}
               # properties of whiskers
               , whiskerprops = {'color': base_color}
               # properties of whisker caps
               , capprops = {'color': base_color})
    # by default, the tick label starts at 1 and increments by 1 for
    # each box drawn. this sets the labels to the ones we want
    ax.set_xticklabels(x_data)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)

结语

使用 matplotlib 有 5 个快速简单的数据可视化方法。将相关事务抽象成函数总是会使你的代码更易于阅读和使用!我希望你喜欢这篇文章,并且学到了一些新的有用的技巧。

英文原文:
  • 大小: 251.3 kb
  • 大小: 60.9 kb
  • 大小: 87.3 kb
  • 大小: 199.8 kb
  • 大小: 137.6 kb
  • 大小: 34.5 kb
  • 大小: 14.4 kb
  • 大小: 16.2 kb
  • 大小: 18.7 kb
  • 大小: 16.8 kb
来自:
1
0
评论 共 0 条 请登录后发表评论

发表评论

您还没有登录,请您登录后再发表评论

相关推荐

  • 【入门基础 轻实战演示】【讲授方式轻松幽默、有趣不枯燥、案例与实操结合,与相关课程差异化】利用python进行数据处理、 ...通过实战,学生将了解标准的数据分析流程,学会使用可视化的 方法展示数据及结果。

  • 公众号后台回复“图书“,了解更多号主新书内容 作者:ai悦创 来源:ai悦创其实,除了使用 python 编写爬虫来下载资料, python 在数据分析和可视化方面也非常强...

  • python实现数据可视化i feel: 我觉得: in today’s digital world data has become as important as air. machines & humans both are literally breathing in & breathing out data, data & data…. ...

  • 众所周知,超市的数据量十分的大,而且是实时变动的,小李平时做数据分析都是用的excel,处理一些小数据量的数据很方便,但一碰到大数据量就会卡死,更别说实时更新数据了,而且用excel做一些复杂可视化步骤十分繁琐...

  • 数据聚焦于数据的采集、清理、预处理、分析和挖掘,图形聚焦于解决对光学图像进行接收、提取信息、加工变换、模式识别及存储显示,可视化聚焦于解决将数据转换成图形,并进行交互处理。 信息:是数据的内涵,信息是...

  • 使用python爬取腾讯新闻疫情数据,并使用pyecharts可视化,绘制国内、国际日增长人数地图,matplotlib绘制方寸图。 随笔记录所的所学,此博客为我记录文章所用,发布到此,仅供网友阅读参考。作者:北山啦 现在...

  • python的地图可视化库很多,matplotlib库虽然作图很强大,但只能做静态地图。而我今天要讲的是交互式地图库,分别为pyecharts、folium,掌握这两个库,基本可以解决你的地图可视化需求。 pyecharts 首先,必须说说...

  • 1.3 数据可视化 2 1.4 python环境介绍 2 1.4.1 简介 2 1.4.2 特点 3 1.5 扩展库介绍 3 1.5.1 安装模块 3 1.5.2 主要模块介绍 3 ① pandas模块 3 ② requests模块 4 ③ bs4模块 4 ④ selenium模块 4 ⑤ matplotlib...

  • python视频教程]letspython视频教程免费下载链接提取码:dxpn[python视频教程]letspython视频教程|lets-python-017-文件和输入输出|lets-python-016-条件和循环02-练习题和生成器.avi|lets-python-015-条件和循环|...

  • matlab导入excel代码使用python进行数据可视化。 数据可视化是一种以图形形式显示复杂数据的方式,更易于理解,更有效,更具吸引力和影响力。 它用于: 探索性数据分析。 清楚地交流数据。 共享的数据无偏见表示。 ...

  • 数据可视化是数据科学家工作的重要组成部分。在项目的早期阶段,您通常会进行探索性数据分析(eda)以获得对数据的一些见解。创建可视化确实有助于使事情更清晰、更容易理解,尤其是对于更大、更高维度的数据集。在...

  • 课程分享——python数据可视化分析库-matplotlib,附课件、代码。 matplotlib 可能是 python 2d-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索 matplotlib...

  • python是进行数据分析的一种很不错的语言,主要是因为以数据为中心的库非常适合。 pandas是其中的一种,使导入和分析数据更加容易。 在本文中,我使用了来分析斯坦福网站的公共数据集中的country data.csv文件中的...

  • (文末送书)利用可视化探索图表一、数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据。图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义。用户通过探索图...

  • 最近整理了一些比较优秀的python数据可视化库(来自过去从各种推荐中收藏的内容以及在github中的搜索),比较全面,供朋友们参考。

  • 不知不觉疫情已经快要才出现三年了,对于疫情管控,我国有一系列良好的措施。下面我们通过python对疫情数据进行一个简单的爬取整理以及可视化。

  • 数据可视化是数据科学中关键的一步。在以图形方式表现某些数据时,python能够提供很大的帮助。不过有些小伙伴也会遇到不少问题,比如选择何种图表,以及如何制作,代码如何编写,这些都是问题!今天给大家介绍一个...

  • 本次使用python中requests和beautifulsoup库对中国天气网当天和未来14天的数据进行获取,保存为csv文件,之后用matplotlib、numpy、pandas对数据进行可视化处理和分析,得到温湿度度变化曲线、空气质量图、风向雷达...

  • 使用python爬取腾讯新闻疫情数据,并使用pyecharts可视化,绘制国内增长人数地图、柱状图、折线图。 文章目录1.分析网页2.导入模块3.抓取数据4.提取数据并写入excel5.国内各地区现有确诊人数地图6.国内各地区现有...

global site tag (gtag.js) - google analytics