概述
每一个机器学习工作流至少由两部分组成。第一部份是加载你的数据并准备它用于学习。我们将此部分称为etl(提取、转换、加载)过程。datavec是我们为让构建数据管道更容易而构建的库。第二部分是实际的学习系统本身。这是dl4j的算法核心。
所有的深层学习都是基于向量和张量的,dl4j依赖于一个叫做nd4j的张量库。它为我们提供了处理n维数组(也叫做张量)的能力。由于其不同的后端,它甚至使我们能够同时使用cpu和gpu。
为学习和预测准备数据
与其他机器学习或深度学习框架不同,dl4j将加载数据和训练算法的任务视为单独的过程。你不只是把模型指向在磁盘上保存的数据,而是使用datavec加载数据。这为您提供了更大的灵活性,并保留了简单数据加载的便利性。
在算法开始学习之前,你必须准备好数据,即使你已经有了一个经过训练的模型。准备数据意味着加载数据并将其置于正确的形状和值范围(例如,归一化、零均值和单位方差)。从头开始构建这些过程是容易出错的,因此尽可能使用datavec。
deeplearning4j可以处理许多不同的数据类型,比如图像、csv、arff、纯文本,并且通过apache camel集成,可以处理几乎任何其它可以想到的数据类型。
要使用datavec,需要连同recordreaderdatasetiterator一起使用一个recordreader接口的实现。
一旦你有了一个datasetiterator, 它是一个描述顺序访问数据的模式,你可以使用它得到适合训练神经网络模型的格式的数据。
归一化数据
当它们被馈送的数据被归一化时,神经网络工作得最好,数据被限制在1到1之间。这样做有几个原因。一个是使用梯度下降训练网络,并且它们的激活函数通常在-1和1之间的某个范围。即使使用不会很快饱和的激活函数,将你的值限制到这个范围以提高性能仍然是很好的实践。
在dl4j中归一化数据相当简单,取决于你想要怎样归一化你的数据,并为你的datasetiterator设置相关的datanormalization作为预处理器。
imagepreprocessingscaler显然是图像数据的不错的选择。如果你在输入数据的所有维度上具有统一的范围,那么normalizerminmaxscaler是一个不错的选择,并且normalizerstandardize是你在其他情况下通常使用的工具。
如果你需要其他类型的归一化,你也可以自由地实现datanormalization接口。
如果你使用normalizerstandardize,请注意这是一个取决于从数据中提取的统计信息的一个归一化器,所以你必须同模型一起保存这些统计信息,以便你可以在恢复模型时恢复它们。
datasets, indarrays 和 mini-batches
顾名思义,datasetiterator会返回dataset对象。dataset对象是数据的特征和标签的容器。但它们并不局限于一次只持有一个实例。数据集可以包含需要的多个实例。
它通过在几个indarray实例中保存这些值:一个用于实例的特性,一个用于标签,以及另外两个用于屏蔽,如果你正在使用时间序列数据(参见使用rnn/masking,了解更多信息)。
indarray是nd4j中使用的n维数组或张量之一。在特征的情况下,它是实例大小数x特征数量的矩阵。即使只有一个实例,它也会有这种形状。
为什么它不同时包含所有的数据实例?
这是深入学习的另一个重要概念:迷你批处理。为了产生准确的结果,经常需要大量真实世界的训练数据。通常,这是比在可用内存中拟合的数据更多,所以有时将其存储在单个数据集中是不可能的。但是,即使有足够的数据存储,还有一个重要的原因不立即使用所有的数据。那就是使用小批量,您可以在一次训练中获得更多的更新。
那么,为什么要在数据集中有一个以上的例子呢?由于模型是使用梯度下降训练,它需要一个良好的梯度学习如何最小化误差。一次只使用一个示例将创建只考虑当前示例产生的错误的梯度。这会使学习行为不稳定,减慢学习,甚至可能导致不可用的结果。
一个小批量应该足够大,以提供真实世界(或者至少是你的数据)的代表性样本。这意味着它应该始终包含你想要预测的所有类,并且这些类的计数应该以与总体数据中的类分布大致相同。
构建一个神经网络模型
dl4j为数据科学家和开发人员提供了工具,用于在一个高层使用的概念上构建一个深度神经网络,例如 layer。它使用一个构建器模式来声明性地构建神经网络,正如您在这个(简化的)示例中可以看到的:
multilayerconfiguration conf =
new neuralnetconfiguration.builder()
.optimizationalgo(optimizationalgorithm.stochastic_gradient_descent)
.updater(new nesterovs(learningrate, 0.9))
.list(
new denselayer.builder().nin(numinputs).nout(numhiddennodes).activation("relu").build(),
new outputlayer.builder(lossfunction.negativeloglikelihood).activation("softmax").nin(numhiddennodes).nout(numoutputs).build()
).backprop(true).build();
如果你熟悉其他的深度学习框架,你会注意到这有点像keras。
与其他框架不同,dl4j从更新器算法中分离优化算法。这允许灵活性,当你寻求一个优化器与更新器来为你的数据和问题最好的工作。
除了上面示例中看到的denselayer和outputlayer之外,还有其他几种层类型,如graveslstm、卷积层、rbm、embeddinglayer等。使用这些层,你不仅可以定义简单的神经网络,还可以定义递归和卷积网络。
训练一个模型
在你配置你的神经网络之后,你必须训练你的模型。最简单的情况是在模型上简单的调用.fit()方法,并用你的datasetiterator作为配置参数。这将在你所有的数据上一次性训练你的模型。在整个数据集上传递一次叫做一次训练。dl4j 有多个不同的方法来多次传递数据。
最简单的方法,是重置你的datasetiterator并在fit的调用上循环你想要的次数。这种方法可以训练你的模型一直到你认为你的训练有良好的拟合。
然而还有一种方法是使用。只要你喜欢,你可以配置这个训练器用于你想要的训练次数。它将在每个训练之后评估你的网络性能(或者你 所配置的任何阶段),并保存性能最好的版本供以后使用。
还要注意的是,dl4j不仅支持多层次网络的训练,而且还支持更灵活的计算图
评估模型性能
当你训练你的模型时,你会想测试它的性能。对于该测试,您将需要一个专用的数据集,该数据集将不用于训练,而是仅用于评估模型。这些数据应该与你想用模型进行预测的真实世界数据有相同的分布。不能简单地将训练数据用于评估的原因是因为机器学习方法容易过拟合(擅长对训练集进行预测,但在较大的数据集上表现不佳)。
评价类用于评价。略有不同的方法适用于评估一个正常的前馈网络或循环网络。有关使用它的更多细节,请查看相应的。
神经网络模故障排查
建立神经网络来解决问题是一个经验过程。也就是说,它需要反复试验。因此,你必须尝试不同的设置和体系结构,以便找到性能良好的神经网络配置。
dl4j提供了一个监听器工具,帮助你直观地监视网络的性能。你可以为你的模型设置监听器,在每个小批量处理之后调用。dl4j最常用的监听器之一是。检查更多的。
虽然scoreiterationlistener将简单的打印你的网络的当前错误分数,histogramiterationlistener将启动一个网页界面来提供你一组可以用来微调网络配置的不同信息。查看 来知道如何解释这些数据
查看 获取如何改进结果的更多信息。
有任何问题请联系微信
相关推荐
1. shardingsphere的基本介绍 2. shardingsphere的核心组成 3. shardingsphere的核心概念 4. sharding
树莓派开始玩转linux,高清pdf epub “内容简介 本书以树莓派为基础...读者不仅能体验到玩树莓派的乐趣,而且能全面了解操作系统的核心概念和原理。” 摘录来自: vamei. “树莓派开始,玩转linux。” apple books.
本书从介绍内存和实时内存概念开始,然后讲述了指针变量的概念和它重要的操作(引用和解引用)、指针运算和一维数组、使用指针处理字符串、指针访问多维数组的用法、使用指针访问结构体与成员字段、函数指针概念的...
spring是一个开放源代码的设计层面框架,他解决的是业务逻辑...从框架入口开始抽丝剥茧,理解其每一个核心概念以及作用,并将这些核心技术点融汇起来 探究每一个核心的实现细节(uml图、跑单元测试用例、debug,体悟)
本书从介绍内存和实时内存概念开始,然后讲述了指针变量的概念和它最重要的操作(引用和解引用)、指针运算和一维数组、使用指针处理字符串、指针访问多维数组的用法、使用指针访问结构体与成员字段、函数指针概念的...
小型机器学习项目,以了解核心概念(顺序:从最早到最新) 使用带有新闻组20数据集的潜在dirichlet分配进行主题建模,并使用python和scikit-learn实现 在mnist数据集上实现了用keras构建的简单神经网络 使用线性...
访问 ,然后单击“开始”以导航到编辑器/控制台。 该站点当前支持基本的,未经指导的代码编辑和编译。 寻找2021年的更多功能版本。 学分: 用于远程执行代码的jdoodle api 用于嵌入式编辑器的ace
在本指南中,我们将快速浏览您需要理解的最重要的核心概念,以成 为一个有效的 ext js 开发人员。在每一步中,我们将研究一个工作代码示例,然后讨论任何新概念。我们 将把每个部分调整为一个最终的公司目录应用程序...
本章从一些基本概念开始,详细介绍c builder 3面向对象的编程思想,并初步介绍vcl的结构。c builder 3中的元件很多,尽管这些元件千差万别,但它们都是从几个公共基类继承下来的,因此,这些元件具有某种程度的...
快速开始 // // bootstrap your app // import react from 'react' ; import provider , { usemodel } from 'dva-react-hook' ; function app ( ) { const name = usemodel ( 'name' ) [ 0 ] ; const [ { value :...
7.6.htm 用 ^ 匹配目标字符串的开始位置 7.7.htm 用 $ 匹配目标字符串的结尾位置 7.8.htm 用 \b 匹配一个字边界 第8章(/c08/) 8.1.htm xhtml中的事件绑定 8.2.htm 一个...
laravel拥有所有现代web应用程序框架中最广泛,最全面的文档和视频教程库,因此轻而易举地开始使用该框架。 如果您不想读书,可以使用laracasts提供帮助。 laracasts包含1500多个视频教程,涉及各种主题,包括...
从perl 5开始,学习perl编程的重要核心概念,如变量、流控制、表达式和i/o。此外,这本书还介绍了模式匹配,并展示了perl非常灵活和强大,而且它不害怕云。在阅读和使用这本书之后,您将能够开始编写自己的强大脚本...
它专注于被称为深度学习的机器学习子领域,解释了核心概念,并为您提供了开始构建自己的模型所需的基础。而不是简单地概述使用现有工具包的教程,实用深度学习教你为什么使用深度学习,并将激励你进一步探索。 你所...
本书以树莓派基础工具,讲解linux操作系统。树莓派是近年来流行的微型电脑,能用于各种有趣的硬件开发。...读者不仅能体验到玩树莓派的乐趣,而且能全面了解操作系统的核心概念和原理。 http://www.cnblogs.com/vamei
sonet是同步光纤网络的缩写,最初是在20世纪80年代由bellcore提出的,第一批光网络从那之后开始出现。现在是一个ansi的光纤传输系统标准。sonet定义接口的标准位于osi七层模型结构的物理层,这个标准定义了接口速率的...
正如大多数计算机科学家一样,我相信编程始终是计算机科学的核心主题。因此,本课程的目的是教学生怎样编写程序。 虽然本书在形式上保持了传统风格,但也使用了许多新技术,主要表现在三个方面: ● 所用的编程语言...
本书以树莓派为基础工具,讲解linux操作系统。树莓派是近年来流行的微型电脑,能用于各种有趣的硬件开发。树莓派中安装了linux系统,可以...读者不仅能体验到玩树莓派的乐趣,而且能全面了解操作系统的核心概念和原理。
本书以树莓派基础工具,讲解linux操作系统。树莓派是近年来流行的微型电脑,能用于各种有趣的硬件开发。树莓派中安装了linux系统,可以...读者不仅能体验到玩树莓派的乐趣,而且能全面了解操作系统的核心概念和原理。
近年来,越来越多的学者开始探索制度因素对组织生产和运作的影响,并形成了新的研究视角-制度基础,组织合法性是新制度主义理论的“核心概念”。 。 本文通过国内外相关文献,系统地阐述了组织合法性的基本问题,...